skip to main content


Search for: All records

Creators/Authors contains: "Liu, Vincent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While serverless platforms substantially simplify the provisioning, configuration, and management of cloud applications, implementing correct services on top of these platforms can present significant challenges to programmers. For example, serverless infrastructures introduce a host of failure modes that are not present in traditional deployments. Individual serverless instances can fail while others continue to make progress, correct but slow instances can be killed by the cloud provider as part of resource management, and providers will often respond to such failures by re-executing requests. For functions with side-effects, these scenarios can create behaviors that are not observable in serverful deployments. In this paper, we propose mu2sls, a framework for implementing microservice applications on serverless using standard Python code with two extra primitives: transactions and asynchronous calls. Our framework orchestrates user-written services to address several challenges, such as failures and re-executions, and provides formal guarantees that the generated serverless implementations are correct. To that end, we present a novel service specification abstraction and formalization of serverless implementations that facilitate reasoning about the correctness of a given application’s serverless implementation. This formalization forms the basis of the mu2sls prototype, which we then use to develop a few real-world microservice applications and show that the performance of the generated serverless implementations achieves significant scalability (3-5× the throughput of a sequential implementation) while providing correctness guarantees in the context of faults, re-execution, and concurrency. 
    more » « less
  2. Cloud data centers are evolving fast. At the same time, today’s large-scale data analytics applications require non-trivial performance tuning that is often specific to the applications, workloads, and data center infrastructure. We propose TeShu, which makes network shuffling an extensible unified service layer common to all data analytics. Since an optimal shuffle depends on a myriad of factors, TeShu introduces parameterized shuffle templates, instantiated by accurate and efficient sampling that enables TeShu to dynamically adapt to different application workloads and data center layouts. Our preliminary experimental results show that TeShu efficiently enables shuffling optimizations that improve performance and adapt to a variety of data center network scenarios. 
    more » « less
  3. Network architects are frequently presented with a tradeoff: either (a) introduce a new or improved control-/management plane application that boosts overall performance, or (b) use the bandwidth it would have occupied to deliver user traffic. In this paper, we present OrbWeaver, a framework that can exploit unused network bandwidth for in-network coordination. Using real hardware, we demonstrate that OrbWeaver can harvest this bandwidth (1) with little-to-no impact on the bandwidth/latency of user packets and (2) while providing guarantees on the interarrival time of the injected traffic. Through an exploration of three example use cases, we show that this opportunistic coordination abstraction is sufficient to approximate recently proposed systems without any of their associated bandwidth overheads. 
    more » « less