Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 6, 2026
- 
            Stateful serverless workflows consist of multiple serverless functions that access state on a remote database. Developers sometimes add a cache layer between the serverless runtime and the database to improve I/O latency. However, in a serverless environment, functions in the same workflow may be scheduled to different nodes with different caches, which can cause non-intuitive anomalies. This paper presents CausalMesh, a novel approach to causally consistent caching in serverless computing. CausalMesh is the first cache system that supports coordination-free and abort-free read/write operations and read transactions when clients roam among multiple servers. CausalMesh also supports read-write transactional causal consistency in the presence of client roaming but at the cost of abort-freedom. Our evaluation shows that CausalMesh has lower latency and higher throughput than existing proposals.more » « lessFree, publicly-accessible full text available April 28, 2026
- 
            Free, publicly-accessible full text available April 28, 2026
- 
            Free, publicly-accessible full text available April 28, 2026
- 
            Stateful serverless workflows consist of multiple serverless functions that access state on a remote database. Developers sometimes add a cache layer between the serverless runtime and the database to improve I/O latency. However, in a serverless environment, functions in the same workflow may be scheduled to different nodes with different caches, which can cause non-intuitive anomalies. This paper presents CausalMesh, a novel approach to causally consistent caching in serverless computing. CausalMesh is the first cache system that supports coordination-free and abort-free read/write operations and read transactions when clients roam among multiple servers. CausalMesh also supports read-write transactional causal consistency in the presence of client roaming, but at the cost of abort-freedom. Our evaluation shows that CausalMesh has lower latency and higher throughput than existing proposals.more » « less
- 
            Stateful serverless workflows consist of multiple serverless functions that access state on a remote database. Developers sometimes add a cache layer between the serverless runtime and the database to improve I/O latency. However, in a serverless environment, functions in the same workflow may be scheduled to different nodes with different caches, which can cause non-intuitive anomalies. This paper presents CausalMesh, a novel approach to causally consistent caching in serverless computing. CausalMesh is the first cache system that supports coordination-free and abort-free read-/write operations and read transactions when clients roam among multiple servers. CausalMesh also supports read-write transactional causal consistency in the presence of client roaming, but at the cost of abort-freedom. Our evaluation shows that CausalMesh has lower latency and higher throughput than existing proposals.more » « less
- 
            Abstract Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center ($${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ ) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ spin transitions as well as extended coherence timeT2and relaxation timeT1. For quantum sensing,$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available